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ABSTRACT 
The purpose of this study is to investigate the nature of mathematical modeling and 
identify characteristics of mathematical inquiries triggered by mathematical modeling. 
We investigated three cases of mathematical inquiries facilitated by mathematical 
modeling. As a result of this study, we revealed the abductive nature of mathematical 
modeling. We also determined that mathematical inquiries triggered by mathematical 
modeling have abductive, recursive, analogical, and context-dependent aspects. 
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INTRODUCTION 
Mathematical modeling has been discussed as a means of fostering students’ mathematical inquiries. Because 
mathematical modeling can both support students’ reinvention of mathematical contents and in itself be a goal of 
mathematical inquiries (Ottesen, 2001), researchers have been attempting to build theoretical frameworks to design 
and analyze mathematical modeling activities that aim to accomplish these educational goals. 

Nevertheless, it has been pointed out that the key characteristics of mathematical modeling need to be identified 
(Ärlebäck & Doerr, 2015). To be specific, we still have no clear answers to the following questions: What is it about 
the nature of mathematical modeling that enables it to trigger mathematical inquiries? What are the aspects or 
characteristics of mathematical modeling that enable it to trigger mathematical inquiries? 

Peirce emphasized the key role of abductive reasoning in inquiries and knowledge creation (Prawat, 1999). In 
this study, we aim to answer the above questions from Peircean perspective. To be more specific, we aim to 
investigate the nature of mathematical modeling and identify characteristics of mathematical inquiries triggered 
by mathematical modeling. To accomplish the aims of this study, we first examine students’ use of abduction 
observed in a mathematics classroom that focused on mathematical modeling activities. We then analyze historical 
episodes that show the creation of mathematical objects. We then identify the nature of mathematical modeling and 
characteristics of mathematical inquiries fostered by mathematical modeling. 

MATHEMATICAL MODELING AND ABDUCTION 

What is Mathematical Modeling? 
Peirce declared, 

mathematics to be the science which draws necessary conclusions … essence of mathematics lies in its 
making pure hypotheses, and in the character of the hypotheses which it makes. What the 
mathematicians mean by a hypothesis is a proposition imagined to be strictly true of an ideal state of 
things (C.P. 3.558).  

In other words, hypotheses can be true of an ideal state of things since a mathematical inquiry is done in the 
form of a simplified problem that can be dealt with mathematically (C.P. 3.559). In addition, because a simplified 
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problem is represented by mathematical language such as diagrams, characters, equations, and so on (C.P. 3.560), 
representing a problematic situation by means of mathematical language is a model (Lenhard, 2005). 

The first business of the mathematician, often a most difficult task, is to frame another simpler but quite fictitious 
problem (C.P. 3.559). 

Kant is entirely right in saying that, in drawing those consequences, the mathematician uses what, in 
geometry, is called a “construction,” or in general a diagram, or visual array of characters or lines. 
Such a construction is formed according to a precept furnished by the hypothesis. Being formed, the 
construction is submitted to the scrutiny of observation, and new relations are discovered among its 
parts, not stated in the precept by which it was formed, and are found, by a little mental 
experimentation, to be such that they will always be present in such a construction. Thus, the necessary 
reasoning of mathematics is performed by means of observation and experiment, and its necessary 
character is due simply to the circumstance that the subject of this observation and experiment is a 
diagram of our own creation, the conditions of whose being we know all about (C.P. 3.560). 

Rothenberg (1989) noted that the basic use of a model is to signify something else. Thus, if we would like to 
clarify the meaning of a model, we need to identify what it signifies and how it signifies it. Fischbein (1987) and 
Lesh and Doerr (2003) both pointed out that mathematical models are systems that signifying other systems. In 
other words, models explain the relations and mechanisms of objects rather than signifying a single object. 
Fischbein (1987) noted that relations between originals and models are structural isomorphism while Lesh and 
Doerr (2003) considered these relations structural similarity. 

In this study, we interpret relationships between originals and models as structural similarity. We expect that 
models can have more potential meanings than originals, and new meanings supported by semiosis can be arise by 
modifying and revising mathematical models (Park et. al., 2013). Based on the above discussions, we define a 
mathematical model as follows: 

Mathematical model: A system described by mathematical language that signifies another system focusing on 
structural similarity. 

We define a mathematical model as a system described by mathematical language because we expect that the 
usage of mathematical objects and procedures can be enriched through building and revising mathematical models 
from a commognitive perspective on the creation and development of mathematical knowledge (see Sfard, 2008). 

Mathematical modeling is usually considered a cyclic process that includes building, validating, and revising 
models (Bailer-Jones, 1999; Lesh & Doerr, 2003). The explanatory power of mathematical models can be validated 
by inductively applying models to similar problematic situations and by deductively examining the internal 
consistency of the models (Bailer-Jones, 1999). Given that, we define mathematical modeling as follows:  

Mathematical modeling: The processes that involves building a mathematical model, examining its 
appropriateness, validity, and consistency by using it inductively or deductively and then revising it. 

Inquiries via Abductions 
Abduction is the process of forming an explanatory hypothesis based on observed results (C.P. 5.171). According 

to Peirce, abduction, which draws a case from a rule and a result (C.P. 2.623). Since a case drawn from a rule and a 
result is a plausible hypothesis, Peirce called a hypothesis abduction. 

Peirce emphasized the abduction is the only way of knowledge creation (Prawat, 1999). According to Peirce, 
“[abduction] is the first step of scientific reasoning, as induction is the concluding step” (C.P. 7.218). Thus, we first 
utilize abduction to hypothesize a provisional general rule that explains particular observed results, then 
inductively and deductively verify and revise the initial abduction and hypothesis (C.P. 5.171). 

Contribution of this paper to the literature 

• The abductive nature of mathematical modeling, which enables triggering of mathematical inquiries, is 
identified, and this contributes to establishing theoretical grounds for utilizing mathematical modeling in 
the mathematics classroom. 

• The key characteristics of mathematical inquiries triggered by mathematical modeling identified in this 
study makes contributions to local learning theories about teaching and learning mathematics using 
mathematical modeling. 

• This study presented further key issues and research questions regarding mathematics teaching and 
learning using mathematical modeling. 
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Eco (1983) categorized abduction into three types: overcoded, undercoded, and creative. This classification is 
related to the number of rules that can explain the observed results. Overcoded abduction is deriving a rule that 
explains the observed result automatically or semi-automatically. If there are a series of equiprobable rules to 
explain an observed result, undercoded abduction is utilized. If there are no rules to explain observed result, we 
have to create a rule to explain the result. That is the moment that creative abduction occurs.  

Except for overcoded abduction, undercoded and creative abduction usually involve three steps (Peng & 
Reggia, 1990). The first step is generating provisional hypotheses to explain observed results and problematic 
situations. This step is implemented when we simplify given complex situations into more manageable situations, 
or models (Lenhard, 2005). The second step is updating hypotheses based on newly available information. We 
construct abductions based on the observed results of experiments on simplified problem situations. Thus, we can 
update or generate new abductions based on additional experiments on simplified situations. The third step is 
verifying a hypothesis utilizing abductions inductively and deductively. These three steps are usually cyclic and 
non-linear and involve generation, refutation and revision of abductions (Peng & Reggia, 1990). 

We adopt Eco’s categorization of abductions as a framework for analyzing mathematical inquiries that have 
been facilitated by mathematical modeling. To be more specific, we analyze how abductions can be constructed 
using mathematical modeling and how these abductions are related to the students’ mathematical inquiries using 
mathematical modeling. We also adapt three steps of constructing abductions as a framework to analyze 
mathematical inquiries triggered by mathematical modeling. 

Modeling and Abduction 
Mathematical modeling usually proceeds cyclically as shown in Figure 1. 
Building a model of a problem situation (or mathematizing B->C in Figure 1) involves searching mathematical 

rules to explain the observation results of a problem situation and interpreting a given situation using mathematical 
objects or procedures (Park & Lee, 2016). Given that, we can consider that abductive reasoning intervenes in 
building models.  

In the following, we mainly focus on undercoded abductions and creative abductions triggered by the 
mathematizing phase (B->C) of modeling in order to identify how modeling and abductive reasoning are related. 
As reviewed above, overcoded abduction involves automatic or semi-automatic establishment of a hypothesis. 
Given that, it is unlikely that overcoded abduction can support productive mathematical inquiries. Therefore, 
investigating undercoded and creative abductions facilitated by modeling is enough to identify a relationship 
between abductions and mathematical inquiries using modeling.  

To analyze undercoded abductions triggered by mathematical modeling, we mainly focus on the results of Park 
and Lee (2013). McClain and Cobb (2001) noted that analyzing the results of prior research can be an appropriate 
research method to initiate discussions and draw implications about educational issues. As Park and Lee (2013) 
reported the detailed processes of students’ attempts to discover the mathematical rules that explain a problem 
situation, we considered the results of this study to be proper research material for analyzing undercoded 
abductions triggered by mathematical modeling. 

 
Figure 1. Modeling cycle (Galbraith & Stillman, 2006, p. 144) 
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To analyze creative abductions triggered by mathematical modeling, we focus on two historic episodes 
involving Euler and Napier, who created mathematical objects and procedures while modeling. Analysis of key 
historic episodes can be used in identifying how mathematical inquiries progress (Lee, 2009). Thus, we considered 
analysis of these two historic episodes to be proper research material for analyzing creative abductions triggered 
by mathematical modeling. In the following section, we analyze cases involving undercoded and creative 
abductions triggered by modeling, and identify characteristics of mathematical inquiries supported by 
mathematical modeling. 

CASES: MODELING WITH UNDERCODED AND CREATIVE ABDUCTION 

Modeling with Undercoded Abduction 
Park and Lee (2013) reported how high school students model the trace of a billiard ball. In this study, the 

students tried to build mathematical models of the rectilinear motion of balls by interpreting a given problem 
situation using mathematical objects such as right triangles, lengths, and equations. They considered the given 
problem situation to be a case in which a general mathematical rule, the Pythagorean theorem (B->C), is applicable. 
The students then applied the Pythagorean theoream to the given situation and calculated the length between the 
starting point and end point of the ball (C->D). 

We can summarize the students’ modeling as follows: 

Observing the problem situation 
⇓ 

Searching for mathematical objects and procedures related to the problem situation 
⇓ 

Selecting a mathematical rule: the Pythagorean theorem 
⇓ 

Interpreting the given problem situation to be a case in which the Pythagorean theorem is applicable 
⇓ 

Calculating the distance between two points 

The students selected the Pythagorean theorem as the mathematical rule based on the observation results of 
given problem situation and interpreted the given situation to be a case in which the Pythagorean theorem is 
applicable. In this case, we can identify the following abductive reasoning: 

  

 
Figure 2. The students’ modeling of rectilinear motion (Park and Lee, 2013, p. 102) 
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Abductive reasoning Modeling 
Observation results (Result) Billiard balls at two points 

⇓ ⇓ 
Rule is determined based on observation results (Rule) Pythagorean theorem 

⇓ ⇓ 
Consider the observation results to be a case in which 

the rule is applicable (Case) Calculate the distance between two points 

As Prawat (1999) pointed out, abductive reasoning is establishing an explanatory hypothesis for a problematic 
situation. In the above modeling process, the students’ abductive reasoning was involved in determining the 
appropriate mathematical objects or procedures to describe the problem situation. Because the students selected 
the Pythagorean theorem in particular among alternative mathematical objects, their abductive reasoning was 
undercoded. 

Although the students calculated the distance between two points, this was not the proper way of modeling the 
trace of the ball (D->E). They then discovered that a linear function is a more appropriate mathematical object to 
interpret the given problem situation. In this process of interpreting the given problem situation as a case in which 
a linear function is applicable, the following abductive reasoning was identified. 

Abductive reasoning Modeling 
Observation results (Result) Billiard balls at two points 

⇓ ⇓ 
Rule is determined based on observation results (Rule) Linear function 

⇓ ⇓ 
Consider observation results to be a case in which the 

rule is applicable (Case) Find a linear function passing through two points 

These two rounds of abductions also accord with the arguments of Peng and Reggia (1990): 

Peng & Reggia (1990) Park & Lee (2013) 

Initial abduction Interpret the given situation as a case in which the 
Pythagorean theorem is applicable 

⇓ ⇓ 
Refute the initial abduction/ 

Revised abduction 
Interpret the given situation as a case in which a linear 

function is applicable 

⇓ ⇓ 
Adopt the second abduction Find a linear function passing through two points 

As we identified, the students’ use of abduction was undercoded because they selected mathematical rules to 
model the given problem situation among several available mathematical rules. 

Sfard (2008) noted that mathematical discourse develops in two ways. First, endogenous expansion of discourse 
is “what we observe when discourses grow in volume simply because of their being in constant use” (p. 119). On 
the other hand, exogenous expansion of discourse is the conflation of several different discourses into one 
subsuming discourse (p. 122). In Park and Lee’s (2013) results above, the students’ mathematical achievements 
were related to endogenous expansion of mathematical discourse. To be more specific, the students tried to apply 
the mathematical rules (that they already had available them) to unfamiliar new problem situation while modeling. 
As a result, the students found that a linear function is appropriate to describe rectilinear motion. In other words, 
the students’ mathematical narratives related to the use of linear functions were increased. As such, the students’ 
use of undercoded abduction expanded their use of familiar mathematical language to an unfamiliar context. This 
was also an attempt to interpret and describe the given problem situation and led to endogenous expansion of 
mathematical discourse. 

Although the students’ use of undercoded abduction led to an endogenous expansion of mathematical 
discourse in the above case, it is difficult to consider the use of undercoded abduction unrelated to exogenous 
expansion of discourse. The relationship and order of undercoded abduction and creative abduction is not clear, 
but initial inquiries usually begin with attempts to apply preexisting familiar rules to establish an explanatory 
hypothesis for a given situation. As Prawat (1999) pointed out, transplanting discursive constructs to new contexts 
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and roughly using them by utilizing metaphors or analogies is an initial process involved in generating abductions. 
As such, creative abduction creates new rules when it is difficult to explain a given situation using preexisting rules. 
Thus, the use of undercoded abductions that retrace the use of existing rules is needed to generate creative 
abductions that enable the creation of new mathematical rules. Therefore, it is important to consider undercoded 
abduction a foundation of the exogenous expansion of discourse and the creation of new mathematical objects and 
procedures. 

Modeling with Creative Abduction 
Euler invented the mathematical object, the graph, while resolving the Königsberg problem (Burton, 2011). The 

Königsberg problem involves finding a walk through the city that would cross each of seven bridges once and only 
once (see Figure 3). 

To resolve this problem, Euler mathematized the problem situation. To be more specific, he mathematized the 
regions of Königsberg (A, B, C, D) into vertices and bridges into edges, and modeled the situation into a graph as 
shown in Figure 4. 

Euler defined a graph as a mathematical object with a set of vertices and edges, as shown in Figure 4. Euler then 
proved that there is no solution to the Königsberg problem using this graph. The problem solving process of the 
Königsberg problem can be interpreted using the modeling perspective. 

Observing the problem situation (the Königsberg problem) 
⇓ 

Searching for mathematical objects and procedures related to problem situation 
⇓ 

There is no mathematical rule to explain the problem situation 
⇓ 

Creating new mathematical objects (Graph) 
⇓ 

Interpreting the given situation as a case in which a graph is applicable 

Euler first attempted to resolve the Königsberg problem mathematically, but he could not find appropriate 
mathematical objects or procedures. He then created and defined a new mathematical object, the graph, and 

 
Figure 3. The problem situation of the Königsberg (Burton, 2011, p. 534) 

 
Figure 4. Graphical expression of Königsberg problem 
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determined the mathematical theorems valid in graph theory to resolve the problem. We can summarize Euler’s 
modeling and abductive reasoning as follows: 

Abductive reasoning Modeling 
Observation results (Result) Königsberg problem 

⇓ ⇓ 
Rule is created based on observation results (Rule) Graph 

⇓ ⇓ 
Consider observation results to be a case in which the 

rule is applicable (Case) Interpret problem situation as graph 

As such, Euler’s use of abduction was creative, since he created new mathematical rules to interpret and explain 
the given problem situation. 

Modeling and abductive reasoning are not restricted to real-world problems. We can consider the creation of 
the logarithm by Napier to be a case of creative abduction using modeling. Napier invented the logarithm to replace 
the task of multiplying two big numbers with the simpler task of adding two other small numbers. The following 
number table shows the relationship between arithmetic progression and geometric progression. 

Arithmetic Progression 0 1 2 3 4 5 6 7 8 … 
Geometric Progression 1 2 4 8 16 32 64 128 258 … 

Napier tried to map the multiplication of geometric progression in the second row as the addition of arithmetic 
progression in the first row. 

 ∷ 1 + 2 = 3   

To represent this relationship, Napier invented a mathematical object, the logarithm, to describe the 
multiplication of a geometric progression as the addition of an arithmetic progression (Burton, 2011). Napier’s 
achievement can be interpreted as a result of modeling multiplicative reasoning on big numbers by additive 
reasoning on small numbers. 

Observing multiplication of big numbers 
⇓ 

Searching for mathematical objects and procedures related to the problem situation 
⇓ 

Devising a way to replace multiplication of big numbers by addition of small numbers 
⇓ 

Creating a new mathematical object (Logarithm) 
⇓ 

Interpreting multiplication of big numbers as a case in which the logarithm is applicable 
 

Abductive reasoning Modeling 
Observation results (Result) Multiplication of big numbers 

⇓ ⇓ 
Rule is created based on observation results (Rule) Logarithm 

⇓ ⇓ 
Consider observation result to be a case in which the 

rule is applicable (Case) 
Replace multiplication of big numbers with addition of 

small numbers using the logarithm 

Euler and Napier invented new mathematical objects to explain unfamiliar observation results. These two 
mathematicians’ ways of reasoning using modeling can be interpreted as cases of creative abduction since they 
created new mathematical objects and procedures to explain a given problem situation. 

Also, we can identify exogenous expansion of mathematical discourse in the above abductive reasoning. In 
other words, Euler and Napier created new mathematical objects to explain unfamiliar situations that are difficult 
to describe using existing mathematical objects. In these cases, abductive reasoning facilitated by mathematical 
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modeling was closely related to exogenous expansion of mathematical discourse since it supported the creation of 
new mathematical rules. 

DISCUSSION AND CONCLUSION 
In this study, we aimed to investigate the nature of mathematical modeling and identify characteristics of 

mathematical inquiries triggered by mathematical modeling. As a result, we identified the abductive nature of 
mathematical modeling. Mathematical modeling involves establishment of an explanatory hypothesis for a given 
problem situation, so mathematical modeling entailed abductive reasoning. We also found that the abductive 
nature of modeling was a main trigger of mathematical inquiries.  

The following characteristics of mathematical inquiries triggered by mathematical modeling can be identified 
in the results of this study. First, mathematical inquiries triggered by modeling have an abductive aspect. 
Mathematical inquires resulting from modeling were progressed mostly in abduction-driven ways rather than 
inductive or deductive ways. Mathematical inquiries resulting from modeling expanded the usage of mathematical 
language or created new objects by utilizing abductions to build mathematical modeling of an observed problem 
situation.  

Second, mathematical inquiries triggered by mathematical modeling have a recursive aspect. As we have 
shown, mathematical modeling progresses cyclically. Given that, mathematical inquiries using modeling 
recursively progress by revising the usage of the mathematical objects that were roughly utilized in building the 
initial models of the given situation.  

Third, mathematical inquiries triggered by mathematical modeling have an analogical aspect. Mathematical 
inquiries using modeling entail endogenous expansion of mathematical discourse while attempting to transplant 
the existing usage of mathematical language to unfamiliar contexts. On the other hand, mathematical inquiries 
using modeling also entail exogenous expansion of mathematical discourse while creating new mathematical 
objects and transplanting them to other similar situations in order to verify the validity of their usage.  

Fourth, mathematical inquiries triggered by mathematical modeling have a context-dependent aspect. The 
validity of the mathematical language used while doing mathematical modeling is confirmed by the problem 
situation as well as its existing usage. That is, the problem situation and context are the key criteria for the validity 
of the usage of mathematical language in mathematical inquiries using modeling.  

We can raise the following issues from the results of this study. First, we didactically and historically showed 
that attempts to model a problem situation can facilitate endogenous/exogenous expansion of mathematical 
discourse. This was closely related to the abductive nature of mathematical modeling, and undercoded abduction 
and creative abduction can entail endogenous and exogenous expansion of mathematical discourse, respectively. 

Second, it is noteworthy to consider that mathematical modeling can be supported by several overlapped 
abductions. The first phase of mathematical modeling is understanding a problem situation (A->B). As we 
reviewed, model building involves simplification of a given problem situation so that we can deal with it, and this 
phase involves interpreting a given situation using already known rules. Given that, Kehle and Lester (2003) 
pointed out that the first phase of modeling involves abductive reasoning while representing a problem situation 
different ways. In this study, we mainly focused on the model-building phase (B->C) to identify the abductive 
nature of modeling and the key characteristics of mathematical inquiries triggered by mathematical modeling. 
However, abductive reasoning can be utilized in other phases of mathematical modeling, so further studies 
investigating overlapped abductions in mathematical modeling are encouraged. 

Third, we focused in particular on learning mathematical objects or procedures while doing mathematical 
modeling, but investigation of modeling competency from a Peircean perspective is also encouraged. Peirce 
emphasized that the method of discovering methods is pure rhetoric. He noted that the pure rhetoric is the highest 
and most living branch of logic (C.P. 2.332), and it is a method of discovering methods (C.P. 2.108). Modeling 
competency is related to the ability to perform all of the processes of mathematical modeling. Thus, investigation 
of modeling competency from the perspective of pure rhetoric is encouraged, because modeling competency 
requires the ability to devise mathematical modeling methods.  

In this study, we investigated the nature of mathematical modeling and identified characteristics of 
mathematical inquiries triggered by mathematical modeling. Further studies identifying various aspects of 
mathematical inquiries triggered by modeling are encouraged in order to verify the possibility of making 
connections between teaching and learning mathematics and modeling various situations. 
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